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ON FRACTURE OF VISCOELASTIC BODIES* 

V.N. NIKOLAEVSKII 

On the basis of a thermodynamic variational principle, a criterion for quasistatic 
crack growth in a viscoelastic solid is deduced: the change in the sum of the scat- 

tering and the rate of decrease of elastic energy equals the increment in surface 
dissipation. The appropriate invariant contour integral is found. The theory prop- 

osed is suitable for cracks of any shape for any loading path on viscoelasticsolids. 
Examples are considered, including crack growth with localized viscous dissipation. 

1. For the system of a solid with a crack subjected to external effects the following 
energy balance can be formed 

PA' $- Q = E' (1.1) 

where P is the external effect, A'is the corresponding displacement, Q is the heat influx,and 

E is the internal energy and differentation is with respect to time. The equationofentropy 
S growth has the form 

Z'S'= TII + Q (1.2) 

where T is the temperature, and n is the rate of entropy production. 

Elimination of the heat influx Q permits expressing IT in terms of the free energyofthe 

solid @ = E - !t"S in the following way in the isothermal case (T= T,,): 

n = (PITo)A’ + S’ - (E./T,) = (P/T&A' - (O./T,) (1.3) 

On the other hand, the dissipation function Ycan be introduced, and the variational prin- 

ciple of least energy dissipation /l/ requires that 

s(n-Y)=O (1.4) 

where we perform the variation with respect to the forces &' and the crack length 1. 

Further manipulations are associated with the spearation of specific energies expendedin 

the formation of fracture surfaces. Thus the surface energy 2y,l is separated /2/ in the free 

energy CD : 
D = cf, (I, J’) = W (1, P) + Zy,A yo = y,, (To, a) (1.5) 

where a is the linear scale (thickness) of the surface zone of the material, and W is the 

elastic energy of a solid with a slit of length I evaluated by means of the specific volume/3/ 

energy U, where G is the Irwin force 

a@ aw 
ap=-= A”, .$x-G (1.6) 

In contrast to the analysis /2/, the electric part A' of the total displacement A :- A' -f- 

Ap is also separated here and Wis given by functions of the forces P. 

We shall give the dissipation Y as follows 

TOY = A (P, I) + Zy*Z’ + 2gz (1.7) 

Here his the dissipation in a solid with a slit calculated by means of the specific vol- 

ume /3/ dissipation D, 2y,l’ is the rate of mechanical energy dissipation due to the rate of 
crack growth I', butindependentofitslength, 2gl is the specific energydissipationinthe sur- 

face layer, where 5 = g(r) can depend on the rate of crack growth. 

The condition of autonomy of crack growth is that y,,, r*,g are independent of P. 
Substitution of (1.5) and (1.7) into (1.4) results in the following: 

6 (A + 8Wldt) - A'6P = -2561- 26 (~1') 
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where we consider the variation 6 (Yl') = 07 Y = yo + y*. 
The quantity 25 is interpreted /3/ as the specific mechanical energy dissipationperunit 

length of the surface layer due to the special surface viscosity of the material (near the 
past crack). Its magnitude is estimated, respectively, 

(1.9) 

Here [u] = fls- p is the jump in the dynamic viscosity on the interfacial surface, pL1l is 
the surface viscosity, p is the viscosity of the same material in bulk, E is Young’s modulus, 
and T is the relaxation time. 

The concept of special surface viscosity is known in hydrodynamics. It was introducedto 
take account of the effect of an adsorption film /4/. The quantity 2E was clarified in /3/ 
as resistance to crack growth in an idealized model of viscous solid fracture. It is exped- 
ient to use the surface viscosity and surface dissipation rate 25 even in the mechanics of 
viscoelastic media. For instance, for such media as polymers, the fact of rearrangement of 
the internal structure near a fracture surface has been well established /5/. Energy, usually 
taken into account as the surface energy y,,, where the introduction of Y, means taking ac- 
count of viscous dissipation that occurs during this rearrangement, is expended in this re- 
arrangement. It is also natural to assume that the strip of materialwith rearrangedstructure 
dissipates mechanical energy differently during viscoelastic strain than prior to the re- 
arrangement. 

We present a numerical estimate of the surface dissipation by the formula 
loo--106 N.m-l.s-l for the values 

5 -yElp . We 

have t- y-10a N/m, E - 108 Pa, P-%0--104 Pa.s which are 
characteristic for polymers. Hence tl$+yl under the completely real condition(104-107)1$((I'~c) 
for the quasistatic growth of small cracks. The surface layer thickness here is a.- 10-e m, 
r-IO-7--10~As, and the characteristic flow velocity in the layer is a/z - (lo-io-*) m/s. 

The variational equation (1.8) decomposes into two independent relations, of which the 
first governs the inelastic part of the displacement velocity 

while the second yields a criterion for crack growth in a viscoelastic solid 

(1.10) 

In other words, a crack grows if the sum of changes in the dissipation and the rate of 
decrease in the potential energy of the solid reaches the critical level specified bytheright 
side in (1.10). 

2. For viscoelastic (creep) media it is customary to introduce the function T,Y” such 
that 

0 
eij' == To% , (2.1) 

II 
T,Y"=21)++- 

The function TOY*, called the additional strain power, thereby performs the role of a 
potential for the strain rate eij', while the elastic energy Uplays for the strain of an 
elastic solid. The integral over the volume V of the solid 

is the additional strain power of the solid T,Y which includes the crack length 1 as a para- 
meter. A stationarity variational principle, completely analogous to the principle (1.4), is 
formulated for the function T,Y, and the derivation to the criterion (1.10) actuallyusesthe 
method of finding the "excess" unknown 1. The initial condition 1 = I, at t = 0 willbe deter- 
mined for the differential equation (1.10) by the solution of the elastic problem. 

To analyze crack growth in a viscoelastic plane (Maxwell material) stretched by forces P, 
we use the customary representations 

D = P2/(2p), U = Pz!(2E) 

Since the excess values of the elastic energy and the dissipation rate are proportional 
to the area of stress concentration, i.e., 12, then 
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A = O,PP"l(2~) + const, W = --BzZ2P2/(2E) + const (2.2) 

where @, e2 are certain numerical coefficients, and the constants are independentofthecrack 
length. 

Substituting the estimate (2.2) into the crack growth condition (1.10) for y = const re- 

sults in the following differential equation 

2% - B,I(PZI~) + 0,1' (WE) = 0 (2.3) 

If the crack growth rate 1' d oes not influence the surface dissipation: f = f. = const 
inthe representation (1.9), then E = const andthe solution of (2.3) has the exponential form 

(2.4) 

A crack grows in a viscoelastic solid if its initial length 1, is greater than the 
threshold value 1, at which the change in dissipation in the solid per unit crack length 
reaches the surface dissipation level. For I, > I, crack growth turns out to be possible be- 
cause of the release of elastic energy. On the other hand, if the length 1, is greater than 

1, but less than the critical Griffith value of the length &:, determined from the equation 

G (I0) = t& (P&/E) = 2y (2.5) 

then the solution (2.4) describes crack growth to the value 10 . If 1, = lc, then the finite 

starting rate of crack growth can be determined from equations (2.3) 

.(L$f”_J& a 

T- (2.6) 

Second particular case: 5 = CP, 5 = [~]/a = const. Then (2.3) becomes 

(2.7) 

and its solution is 

(--I+ ~l+j3(lia))+ ln(- 1 +1/l + B(lla))=l/~cfit + const (2-S) 

The condition for applicability of the computation of a discontinuity by the viscousmodel 

/3/ follows from equation (2.3), namely,acrackshould be much longer than its increment during 

relaxation I> 2'~. For constancy of the surface dissipation such a crack grows in equilibrium 

only as the tensile force drops according to (2.4). For the surface dissipation dependent on 

the rate 1' a crack in a viscous plane grows in equilibrium even for a fixed rupturing force. 

The parabolic law l- t= /3/, which corresponds to the critical condition of viscous solid 

fracture 
-aNal = 25 (2.9) 

follows from the solution (2.8) for such a situation. 

In the opposite case of negligible dissipations A = 5 = 0, the interchangeability of 

the variation and time-differentiation operations reduces the variational relation (1.8) to the 

known representation 
6w - A6P = -2yS1, A = A" 

which yields the classical result of the generalized Griffith condition (2.5) 

G = --awlal = 2y, y = y* + yo 

The complete solution of the problem requires finding the dependence E,(l') for which an 

analysis of the fine structure of the fracture zone is needed by utilization of data on the 

velocity dependence of the fracture energy. 

3. To find the invariant contour integral, the heat influx equation differentiated with 

respect to time should be considered 

(3.1) 

where E is the specific internal energy, 'sij is the stress, qj is the heat influx, eij is the 
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strain, Ui is the displacement, and vi the velocity of displacement 

aeij . 4 ( 
aui auj 

at=eij=T asj+a,, ) au, 
3 uj= -&- 

Let us go over to a moving coordinate system t'and xj'by the rule 

t = t’, Zk = Xk’ + 1,-t, alar’ = aiat + lk’i?kjaldXj, a/axk’ = a/ark 

Then under the assumption of stationarity of the fields in the moving coordinate system, 
we have 

where the primes have been omitted, and 6,, is the unit tensor. Then equation (3.1) takesthe 
form 

l,'S*j & -ln' 

3 k 

+("ij$)s* 
(3.2) 

Let us integrate (3.2) over the domain AP_~ of the stationary state between the contours 
ra and rgsuccessively enclosing the crack vertex. This results in a contour integralofthe 
second kind (in the terminology of /6/J: 

* a 
\ ( -z- 
r'fl k 

E*,fi,je-uoij~~,~_~j) njdr= 1 -+(. ..).TZjdr=const 
n rcz 

(3.3) 

where nj isthenormal component to the contour ra. Since the heat influx equation L = 0 is 
valid in the domain A, (within the contour r,directly enclosing the crack vertex), thenunder 
the usual constraints /3/ on the edges of the slit (no flux) the integral (3.3) over the con- 
tour ra. is zero, and therefore, the constant in the right side of (3.3) is also zero. 

If the specific internal energy E, of the particles belonging to the bulk phase /3/ is 
introduced, then the integral (3.3) takes the following form: 

1’6,jEs-Clij~ln’-~j) njdr = n s 
1,6,j & (E, - e) nj dr 

ra 
k 

(3.4) 

Furthermore, we consider the equation of entropy production differentiated with respect 
to time: 

(3.5) 

In the presence of the zone Ag_a of stationary and isothermal states, we have in the 
moving coordinate system 

Integrating (3.5) in the domain AB_~ results in the following invariant integral: 

s 
9 

* (TJ,‘P,js - Qj) nj dI’ + 2D&j?lj dr = 2 2 lk: (3.6) 

where the derivative of the singular dissipation (within I?,), included in the integral analog 
of the differential relationship (3.5), is in the right-hand side. Insertion of the specific 
volume functions s, and D, reduces the contour integral (3.6) to the following: 

Fk = 1 -& (T,1,‘6,js” - qj) nj dr $- 2DD6kj nj fl= 

rs 

(3.7) 

\ TJ,’ & (s” - S) 6,jnj dI’ + 2 5 (Do-D) 6kjn.j dr + 2 -$1x’ 

pa 
k ra k 
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Finally, the difference between the integrals (3.4) and (3.7) results in a resultant con- 
tour integral around the crack vertex in a viscoelastic solid 

or differently 

aI+ 
Nk= C (2D+~)nkdr-_~i~njdr=N,’ 

r’P 
k 

(3.9) 

where k is the subscript for the axis along which the crack grows while the subscript for the 
volume phase is omitted. The constant Nk” is estimated (see /3/) by considering the flux 
through the contour. r,: 

a 

2[D]+ a[r(To)l ai-)dzs+2+=2(&$ (3.10) 

U = E - Tos, lim [f (?“,,)I a = y,, 

where [D] = D, -D,, is the jump in dissipation, and [f(T,)] = fs -f is the jump in the iso- 
thermal free potential (the elastic energy D) on the fracture surface. 

As regards the quantity 25, it was figured in above, and the representation (3.10) cor- 
responds to its estimate (1.9). The result of (3.9) and (3.10) generalizes the results in /3/ 
directly to the case of the fracture of viscoelastic solids. 

If it is furthermore assumed that the displacements velocities field is decomposable in- 
to elastic and viscous components: vi = vie + viii, then the contour integral (3.9) is represent- 
ed in the form of two components 

N,= + + l;+N,” 
k k 

(3.11) 

evaluated separately 

a.1 * dl=- h- s 2Dnl, dr - Oij s nj dlY 

rP 
k 

e 
$-n%dI’-- oijgnjdr 

x 

The subscript k can be omitted for a crack being propagated rectilinearly. Then the con- 
tour integral (3.11) results in the following fracture criterion: 

(3.12) 

which agrees with the result (1.10) for an unchanged linear scale (a = const). 
Determination of the quantities h,G from the solution of the problem in stresses: 

where E/(2 + 2v) is the shear modulus, K is the stress intensity factor (x = 3-4~ for plane 
strain, x = (3 - v)l(l + v) for the plane state of stress, and v is the Poisson's ratio) trans- 
forms condition (3.12) into the differential equation 

K2 
-- 

P 
(3.13) 

The roots of this equation determine the critical (fracture) values K = K,. For y = const 
and viscous growth of a crack KC- I/f, i.e., K, is a constant for E = const, but proportional 
to velocity 1' for E - 2". 

For the extension of a linear viscoelastic strip with a crack K = P I/K-(1/2) and equation 
(3.13) for y = const takes the form 
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(3.14) 

Comparing (3.14) and (2.3) shows that 

e1 = (n/16)(x + I)-', 8, = (n/8)(x + I)-'(1 + Y) 

4. If the dissipation is localized at the crack vertex /3/, then A = 5 = 0 and condi- 
tion (2.5) is sufficient, but the dependence y* (1') should be considered. If the localized 
dissipation is viscous in nature, then it follows from the second order of the homogeneity of 
the dissipative function /7/ that 

D - yJ = q1'2 (4.1) 

where in general n = n (rr/a), z = p/E. For viscoplastic Bingham media T) = n (Y/E), the resist- 
ance factor (in the terminology of /7/), turns out to be a material constant. Here Yis the 
yield point. 

For a Bingham plane with a normal rupture crack of length 1 stretched by forces P, we 
have G = s (P?E)(1/4). Condition (2.5) results in the following differential equationofquasi- 
static crack growth: 

1’ r- ( g-1 +$j=o 

Solutions for a crack at rest (1'= 0) and growing 

(4.2) 

(4.3) 

hence follow. 
In other words, the role of the initial threshold length lo of the crack is playedbythe 

Griffith value Zc, where the exponent grows, in contrast to (2.4), as the tensile force P 
grows. 

Williams /8/ proposed a solution for crack growth in a stretched viscoelastic plane (from 
Kelvin-Voight material) according to which the idea of localized dissipation was used 

20 = I@'* (PIE)' (4.4) 

independent of the crack length. However, the dissipation level (4.4) will be higher, the 
higher the crack velocity. Comparing (4.1) and (4.4) shows that 2n=n0 (P/E)*. Insertion of 
this latter value of q into the solution (4.3) yields the result /8/ according to which the 
exponent turns out to be independent of P. 

Power-law dependence of y* on the crack velocity 1' were assumed in /9/. Crack develop- 
ment in such real materials as polymers is made complicated by accompanying temperatureeffects, 
which results in complex dependences of the energy expenditures on the crack velocity /lo/. 
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